Skip to content Skip to sidebar Skip to footer

Vektor 1. Pengertian Vektor, Panjang Vektor dan Vektor Satuan

Pengertian Vektor, Panjang Vektor dan Vektor Satuan

A. Pengertian Vektor

Vektor adalah besaran yang mempunyai nilai (besar) dan arah. Secara geometri vektor digambarkan sebagai ruas garis berarah dan dinyatakan dengan huruf kecil yang diberi tanda panah atau menyebut titik pangkal dan ujungnya. Vektor tidak tergantung pada letaknya, tetapi tergantung kepada arahnya.
Perhatikan gambar berikut!
Definisi Vektor
A = titik pangkal vektor $\vec{u}$
B = titik ujung vektor $\vec{u}$
Jadi, $\vec{u}$ = $\overrightarrow{AB}$ dan besar vektor $\overrightarrow{AB}$ sama dengan panjang ruas garis AB.
D = titik pangkal vektor $\vec{v}$
C = titik ujung vektor $\vec{v}$
Jadi, $\vec{v}$ = $\overrightarrow{DC}$ dan besar vektor $\overrightarrow{DC}$ sama dengan panjang rugas garis DC.

Vektor dalam $R^2$

Perhatikan gambar di bawah ini:
Vektor dalam R2
Vektor posisi dari suatu titik adalah vektor yang titik pangkalnya di titik O (pangkal koordinat) dan titik ujungnya di titik yang bersangkutan.
Vektor posisi titik $A(x_1,y_1)$ adalah $\overrightarrow{OA}$, dapat dinyatakan sebagai:
  1. Vektor kolom yaitu $\overrightarrow{OA}=\left( \begin{matrix} x_1 \\ y_1 \\ \end{matrix} \right)$.
  2. Vektor baris yaitu $\overrightarrow{OA}=\left( x_1,y_1 \right)$.
  3. Vektor basis yaitu $\overrightarrow{OA}=x_1\hat{i}+y_1\hat{j}$.
Vektor posisi titik $B(x_2,y_2)$ adalah $\overrightarrow{OB}$ dapat dinyatakan sebagai:
  1. Vektor kolom yaitu $\overrightarrow{OB}=\left( \begin{matrix}x_2 \\ y_2 \\ \end{matrix} \right)$.
  2. Vektor baris yaitu $\overrightarrow{OB}=\left( x_2,y_2 \right)$.
  3. Vektor basis yaitu $\overrightarrow{OB}=x_2\hat{i}+y_2\hat{j}$.
Perhatikan:
$\begin{align}\overrightarrow{AB} &= \overrightarrow{OB}-\overrightarrow{OA} \\ &= \left( \begin{matrix}x_2 \\ y_2 \\ \end{matrix} \right)-\left( \begin{matrix}x_1 \\ y_1 \\ \end{matrix} \right) \\ \overrightarrow{AB} &= \left( \begin{matrix}x_2-x_1 \\ y_2-y_1 \\ \end{matrix} \right) \end{align}$
Vektor $\overrightarrow{AB}$ jika dinyatakan dalam vektor basis menjadi $\overrightarrow{AB}=(x_2-x_1)\hat{i}+(y_2-y_1)\hat{j}$.

Vektor dalam $R^3$

Perhatikan gambar berikut!
Vektor dalam R3
Vektor posisi titik $P(x_1,y_1,z_1)$ adalah $\overrightarrow{OP}$, dapat dinyatakan sebagai:
  1. Vektor kolom yaitu $\overrightarrow{OP}=\left( \begin{matrix} x_1 \\ y_1 \\ z_1 \\ \end{matrix} \right)$.
  2. Vektor baris yaitu $\overrightarrow{OP}=(x_1,y_1,z_1)$.
  3. Vektor basis yaitu $\overrightarrow{OP}=x_1\hat{i}+y_1\hat{j}+z_1\hat{k}$.
Vektor posisi titik $Q(x_2,y_2,z_2)$ adalah $\overrightarrow{OQ}$, dapat dinyatakan sebagai:
  1. Vektor kolom yaitu $\overrightarrow{OQ}=\left( \begin{matrix} x_2 \\ y_2 \\ z_2 \\ \end{matrix} \right)$.
  2. Vektor baris yaitu $\overrightarrow{OQ}=(x_2,y_2,z_2)$.
  3. Vektor basis yaitu $\overrightarrow{OQ}=x_2\hat{i}+y_2\hat{j}+z_2\hat{k}$.
Perhatikan:
$\begin{align}\overrightarrow{PQ} &= \overrightarrow{OQ}-\overrightarrow{OP} \\ &= \left( \begin{matrix} x_2 \\ y_2 \\ z_2 \\ \end{matrix} \right)-\left( \begin{matrix} x_1 \\ y_1 \\ z_1 \\ \end{matrix} \right) \\ \overrightarrow{PQ} &= \left( \begin{matrix} x_2-x_1 \\ y_2-y_1 \\ z_2-z_1 \\ \end{matrix} \right) \end{align}$
Vektor $\overrightarrow{PQ}$ jika dinyatakan dalam vektor basis menjadi $\overrightarrow{PQ}=(x_2-x_1)\hat{i}+(y_2-y_1)\hat{j}+(z_2-z_1)\hat{k}$

B. Panjang Vektor

Misalkan vektor $\vec{a}=x\hat{i}+y\hat{j}$ adalah vektor di $R^2$ maka panjang vektor $\vec{a}$ adalah:
$\left| {\vec{a}} \right|=\sqrt{x^2+y^2}$
Misalkan vektor $\vec{a}=x\hat{i}+y\hat{j}+z\hat{k}$ adalah vektor di $R^3$ maka panjang vektor $\vec{a}$ adalah:
$\left| {\vec{a}} \right|=\sqrt{x^2+y^2+z^2}$

Contoh 1.
Tentukan panjang vektor $\vec{a}=\left( \begin{matrix} -3 \\ 4 \\ \end{matrix} \right)$, $\vec{b}=5\hat{i}+2\hat{j}-3\hat{k}$ dan $\vec{c}=4\hat{i}-3\hat{k}$.
Penyelesaian:
$\begin{align}\vec{a} &= \left( \begin{matrix} -3 \\ 4 \\ \end{matrix} \right) \\ \left| {\vec{a}} \right| &= \sqrt{(-3)^2+4^2} \\ &= \sqrt{9+16} \\ &= \sqrt{25} \\ \left| {\vec{a}} \right| &= 5 \end{align}$
$\begin{align}\vec{b} &= 5\hat{i}+2\hat{j}-3\hat{k} \\ \vec{b} &= \left( \begin{matrix} 5 \\ 2 \\ -3 \\ \end{matrix} \right) \\ \left| {\vec{b}} \right| &= \sqrt{5^2+2^2+(-3)^2} \\ &= \sqrt{25+4+9} \\ \left| {\vec{b}} \right| &= \sqrt{38} \end{align}$
$\begin{align}\vec{c} &= 4\hat{i}-3\hat{k} \\ \vec{c} &= \left( \begin{matrix} 4 \\ 0 \\ -3 \\ \end{matrix} \right) \\ \left| {\vec{c}} \right| &= \sqrt{4^2+0^2+(-3)^2} \\ &= \sqrt{16+0+9} \\ &= \sqrt{25} \\ \left| {\vec{c}} \right| &= 5 \end{align}$

Contoh 2.
Diketahui titik $P(2,3,4)$ dan $Q(-4,3,12)$, tentukan panjang vektor $\overrightarrow{PQ}$.
Penyelesaian:
$\begin{align}\overrightarrow{PQ} &= \overrightarrow{OQ}-\overrightarrow{OP} \\ &= \left( \begin{matrix} -4 \\ 3 \\ 12 \\ \end{matrix} \right)-\left( \begin{matrix} 2 \\ 3 \\ 4 \\ \end{matrix} \right) \\ \overrightarrow{PQ} &= \left( \begin{matrix} -6 \\ 0 \\ 8 \\ \end{matrix} \right) \end{align}$
Panjang vektor $\overrightarrow{PQ}$ adalah:
$\begin{align}\left| \overrightarrow{PQ} \right| &= \sqrt{(-6)^2+0^2+8^2} \\ &= \sqrt{36+0+64} \\ &= \sqrt{100} \\ \left| \overrightarrow{PQ} \right| &= 10 \end{align}$

C. Vektor Satuan

Vektor satuan adalah vektor yang panjangnya satu satuan. Setiap vektor yang bukan vektor nol memiliki vektor satuan.
Misalkan vektor $\vec{a}=x\hat{i}+y\hat{j}$ adalah vektor di $R^2$ maka vektor satuan dari $\vec{a}$ adalah:
${\hat{e}}_{\vec{a}} = \frac{1}{\left| {\vec{a}} \right|}.\vec{a}\Leftrightarrow {\hat{e}}_{\vec{a}} = \frac{1}{\sqrt{x^2+y^2}}\left( \begin{matrix} x \\ y \\ \end{matrix} \right)$.
Misalkan vektor $\vec{a}=x\hat{i}+y\hat{j}+z\hat{k}$ adalah vektor di ${{R}^{3}}$ maka vektor satuan dari $\vec{a}$ adalah:
${\hat{e}}_{\vec{a}}=\frac{1}{\left| {\vec{a}} \right|}.\vec{a}\Leftrightarrow {\hat{e}}_{\vec{a}}= \frac{1}{\sqrt{x^2+y^2+z^2}}\left( \begin{matrix} x \\ y \\ z \\ \end{matrix} \right)$

Contoh 3.
Tentukanlah vektor satuan dari vektor $\vec{a}=-6\hat{i}+8\hat{j}$ dan $\vec{b}=-3\hat{i}+4\hat{j}-12\hat{k}$.
Penyelesaian:
$\begin{align}\vec{a} &= -6\hat{i}+8\hat{j} \\ \vec{a} &= \left( \begin{matrix} -6 \\ 8 \\ \end{matrix} \right) \\ \left| {\vec{a}} \right| &= \sqrt{(-6)^2+8^2} \\ &= \sqrt{36+64} \\ &= \sqrt{100} \\ \left| {\vec{a}} \right| &= 10 \end{align}$
Vektor satuan dari vektor $\vec{a}$ adalah:
$\begin{align}{\hat{e}}_{\vec{a}} &= \frac{1}{\left| {\vec{a}} \right|}.\vec{a} \\ &= \frac{1}{10}.\left( \begin{matrix} -6 \\ 8 \\ \end{matrix} \right) \\ {\hat{e}}_{\vec{a}} &= \left( \begin{matrix} -\frac{3}{5} \\ \frac{4}{5} \\ \end{matrix} \right) \end{align}$
Atau ${\hat{e}}_{\vec{a}}=-\frac{3}{5}\hat{i}+\frac{4}{5}\hat{j}$
$\begin{align}\vec{b} &= -3\hat{i}+4\hat{j}-12\hat{k} \\ \vec{b} &= \left( \begin{matrix} -3 \\ 4 \\ -12 \\ \end{matrix} \right) \\ \left| {\vec{b}} \right| &= \sqrt{(-3)^2+4^2+(-12)^2} \\ &= \sqrt{9+16+144} \\ &= \sqrt{169} \\ \left| {\vec{b}} \right| &= 13 \end{align}$
Vektor satuan dari vektor $\vec{b}$ adalah:
$\begin{align}{\hat{e}}_{\vec{b}} &= \frac{1}{\left| {\vec{b}} \right|}.\vec{b} \\ &= \frac{1}{13}.\left( \begin{matrix} -3 \\ 4 \\ -12 \\ \end{matrix} \right) \\ {\hat{e}}_{\vec{b}} &=.\left( \begin{matrix} -\frac{3}{13} \\ \frac{4}{13} \\ -\frac{12}{13} \\ \end{matrix} \right) \end{align}$
atau ${\hat{e}}_{\vec{b}}=-\frac{3}{13}\hat{i}+\frac{4}{13}\hat{j}-\frac{12}{13}\hat{k}$

D. Soal Latihan

  1. Diketahui titik-titik $P(1,3)$, $Q(2,-1)$ dan $R(-3,2)$. Tentukan $\overrightarrow{PQ}$, $\overrightarrow{QP}$, $\overrightarrow{PR}$ dan $\overrightarrow{RQ}$.
  2. Diketahui titik-titik $A(1,4,2)$, $B(-2,3,1)$ dan $C(5,-2,-1)$. Tentukan $\overrightarrow{AB}$, $\overrightarrow{BC}$ dan $\overrightarrow{CA}$.
  3. Diketahui titik-titik $P(3,a,0)$ dan $Q(-1,5,4)$. Jika $\overrightarrow{PQ}=b\hat{i}+6\hat{j}+4\hat{k}$ maka $2a-3b$ = ...
  4. Tentukan panjang vektor $\vec{c}=9i-12j+36k$.
  5. Nyatakan vektor $\vec{p}=(6,8,-24)$ dalam vektor basis dan tentukan vektor satuannya.
Semoga postingan: Vektor 1. Pengertian Vektor, Panjang Vektor dan Vektor Satuan ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.

Dapatkan Update terbaru, subscribe channel kami:
Channel Youtube b4ngrp
Fanspage FB Catatan Matematika
Channel Telegram Catatan Matematika

Post a Comment for "Vektor 1. Pengertian Vektor, Panjang Vektor dan Vektor Satuan"