Pembahasan Soal UTUL UGM 2013 Matematika IPA Kode 261
Matematika IPA UTUL UGM 2013 Kode 261 No. 1
Titik pusat lingkaran yang menyinggung garis $y=2$ di $(3,2)$ dan menyinggung garis $y=-x\sqrt3+2$ adalah ...A. $(3,\sqrt3)$
B. $(3,3\sqrt3)$
C. $(3,2+\sqrt3)$
D. $(3,2+2\sqrt3)$
E. $(3,2+3\sqrt3)$
Pembahasan:
Perhatikan gambar berikut ini.

PR adalah jarak titik P(3,b) terhadap garis $y=-x\sqrt{3}+2$, maka:
$=\left| \frac{{{x}_{1}}.\sqrt{3}+{{y}_{1}}-2}{\sqrt{{{(\sqrt{3})}^{2}}+{{1}^{2}}}} \right|$
$=\left| \frac{3.\sqrt{3}+b-2}{2} \right|$
PQ adalah jarak titik $P(3,b)$ ke titik $Q(3,2)$, maka:
$PQ=b-2$
$PQ=PR=r$
$\begin{align}b-2&=\frac{3\sqrt{3}+b-2}{2} \\ 2b-4&=3\sqrt{3}+b-2 \\ b&=2+3\sqrt{3} \end{align}$
Jadi, titik pusat lingkaran adalah P$(3,2+3\sqrt3)$.
Jawaban: E
Matematika IPA UM –UGM 2013 Kode 261 No. 2
Diberikan koordinat titik $O(0,0)$, $B(-3,\sqrt7)$, dan $A(a,0)$, dengan $a < 0$. Jika pada segitiga AOB, $\angle OAB=\alpha $ dan $\angle OBA=\beta $, maka $\cos \frac{1}{2}(\alpha +\beta )$ = … A. $\frac{1}{4}$
B. $\frac{1}{4}\sqrt{2}$
C. $\frac{1}{4}\sqrt{6}$
D. $\frac{1}{4}\sqrt{7}$
E. $\frac{1}{4}\sqrt{14}$
Pembahasan:
Perhatikan gambar berikut!

Perhatikan segitiga OCB siku-siku di C, berlaku phytagoras
$BC=\sqrt{7}$, $OC=3$, maka:
$OB=\sqrt{B{{C}^{2}}+O{{C}^{2}}}$
$OB=\sqrt{{{(-3)}^{2}}+{{(\sqrt{7})}^{2}}}$
$OB=4$
$\cos (\alpha +\beta )=\frac{OC}{OB}=\frac{3}{4}$
Ingat: $2{{\cos }^{2}}x=1+\cos 2x$, maka:
$2{{\cos }^{2}}\frac{1}{2}(\alpha +\beta )=1+\cos (\alpha +\beta )$
$2{{\cos }^{2}}\frac{1}{2}(\alpha +\beta )=1+\frac{3}{4}$
$2{{\cos }^{2}}\frac{1}{2}(\alpha +\beta )=\frac{7}{4}$
${{\cos }^{2}}\frac{1}{2}(\alpha +\beta )=\frac{7}{8}$
$\cos \frac{1}{2}(\alpha +\beta )=\sqrt{\frac{7}{8}}=\frac{\sqrt{7}}{2\sqrt{2}}.\frac{\sqrt{2}}{\sqrt{2}}=\frac{1}{4}\sqrt{14}$
Jawaban: E
Matematika IPA UTUL UGM 2013 Kode 261 No. 3
Diketahui vektor-vektor $\vec{u}=(a,1,-a)$ dan $\vec{v}=(1,a,a)$. Jika ${{\vec{u}}_{1}}$ vektor proyeksi $\vec{u}$ pada $\vec{v}$, ${{\vec{v}}_{1}}$ vektor proyeksi $\vec{v}$ pada $\vec{u}$, dan $\theta $ sudut antara $\vec{u}$ dan $\vec{v}$ dengan $\cos \theta =\frac{1}{3}$, maka luas jajaran genjang yang dibentuk oleh ${{\vec{u}}_{1}}$ dan ${{\vec{v}}_{1}}$ adalah ….A. $\frac{2}{9}\sqrt{2}$
B. $\frac{2}{9}\sqrt{6}$
C. $\frac{2}{3}\sqrt{2}$
D. $\frac{2}{3}\sqrt{6}$
E. 2
Pembahasan:
$\cos \theta =\frac{\vec{u}.\vec{v}}{|\vec{u}||\vec{v}|}$
$\frac{1}{3}=\frac{\left( \begin{matrix} a \\ 1 \\ -a \\ \end{matrix} \right).\left( \begin{matrix} 1 \\ a \\ a \\ \end{matrix} \right)}{\sqrt{{{a}^{2}}+{{1}^{2}}+{{(-a)}^{2}}}.\sqrt{{{1}^{2}}+{{a}^{2}}+{{a}^{2}}}}$
$\frac{1}{3}=\frac{2a-{{a}^{2}}}{\sqrt{2{{a}^{2}}+1}.\sqrt{2{{a}^{2}}+1}}$
$\frac{1}{3}=\frac{2a-{{a}^{2}}}{2{{a}^{2}}+1}$
$2{{a}^{2}}+1=6a-3{{a}^{2}}$
$5{{a}^{2}}-6a+1=0$
$(5a-1)(a-1)=0$,
${{a}_{1}}=\frac{1}{5}$ atau ${{a}_{2}}=1$
Karena soal pilihan berganda, kita uji yang paling sederhana yaitu ${{a}_{2}}=1$.
$\vec{u}=(1,1,-1)$ dan $\vec{v}=(1,1,1)$ maka $u.v=\left( \begin{matrix} 1 \\ 1 \\ -1 \\ \end{matrix} \right).\left( \begin{matrix} 1 \\ 1 \\ 1 \\ \end{matrix} \right)=1$
$|\vec{u}|=|\vec{v}|=\sqrt{2{{a}^{2}}+1}=\sqrt{3}$
$|{{\vec{u}}_{1}}|=\left| \frac{\vec{u}.\vec{v}}{|\vec{v}|} \right|=\frac{1}{\sqrt{3}}=\frac{1}{3}\sqrt{3}$
$|{{\vec{v}}_{1}}|=\left| \frac{\vec{v}.\vec{u}}{|\vec{u}|} \right|=\frac{1}{\sqrt{3}}=\frac{1}{3}\sqrt{3}$
Jika $\cos \theta =\frac{1}{3}\Rightarrow \sin \theta =\frac{2}{3}\sqrt{2}$
Luas jajaran genjang:
$=2.\frac{1}{2}.|{{u}_{1}}|.|{{v}_{1}}|.\sin \theta $
$=2.\frac{1}{2}.\frac{1}{3}\sqrt{3}.\frac{1}{3}\sqrt{3}.\frac{2}{3}\sqrt{2}$
$=\frac{2}{9}\sqrt{2}$
Jawaban: A
Matematika IPA UTUL UGM 2013 Kode 261 No. 4
Panjang rusuk kubus PQRS.TUVW adalah 6 cm. Titik X, pada TW, Y pada UV dan Z pada QR. Jika $|TX|:|XW|=1:2$, $|UY|:|YV|=2:1$, dan $PXYZ$ membentuk bidang datar, maka volume bangun $TUYX.PQZ$ adalah … $c{{m}^{3}}$A. 108
B. 80
C. 72
D. 60
E. 36
Pembahasan:
Perhatikan gambar berikut ini!

${{V}_{Kubus}}={{6}^{3}}=216$
Jika kita perhatikan gambar! Maka bidang PXYZ membagi volume bangun ruang PQLK.TUMN, maka:
${{V}_{TUYX.PQZ}}=\frac{1}{2}.{{V}_{PQLK.TUMN}}$
${{V}_{TUYX.PQZ}}=\frac{1}{2}.\frac{2}{3}.{{V}_{Kubus}}$
${{V}_{TUYX.PQZ}}=\frac{1}{3}.216=72$
Jawaban: C
Matematika IPA UTUL UGM 2013 Kode 261 No. 5
Diketahui limas beraturan T.ABCD dengan alas berbentuk persegi dan tinggi limas $2\sqrt{3}$ cm. Jika T’ proyeksi T pada bidang alas dan titik P adalah perpotongan garis berat segitiga TBC, maka panjang sisi alas limas agar T’P tegak lurus segitiga TBC adalah … cm.A. 2
B. $\sqrt{6}$
C. $\sqrt{8}$
D. 3
E. 4
Pembahasan:
Perhatikan gambar berikut ini!

$TT'=2\sqrt{3}$
Perhatikan segitiga $TT'Q$, maka:
$TQ=\sqrt{{{a}^{2}}+{{(2\sqrt{3})}^{2}}}=\sqrt{{{a}^{2}}+12}$
$T'P.TQ=TT'.T'Q$
$T'P=\frac{TT'.T'Q}{TQ}$
$T'P=\frac{2a\sqrt{3}}{\sqrt{{{a}^{2}}+12}}$
Karena P adalah titik berat segitiga TBC, maka:
$PQ=\frac{1}{3}TQ\Leftrightarrow PQ=\frac{1}{3}\sqrt{{{a}^{2}}+12}$
Perhatikan segitiga T’PQ.
$T'{{Q}^{2}}=T'{{P}^{2}}+P{{Q}^{2}}$
${{a}^{2}}={{\left( \frac{2a\sqrt{3}}{\sqrt{{{a}^{2}}+12}} \right)}^{2}}+{{\left( \frac{1}{3}\sqrt{{{a}^{2}}+12} \right)}^{2}}$
${{a}^{2}}=\frac{12{{a}^{2}}}{{{a}^{2}}+12}+\frac{{{a}^{2}}+12}{9}$
$9{{a}^{2}}({{a}^{2}}+12)=108{{a}^{2}}+{{({{a}^{2}}+12)}^{2}}$
$9{{a}^{4}}+108{{a}^{2}}=108{{a}^{2}}+{{a}^{4}}+24{{a}^{2}}+144$
$8{{a}^{4}}-24{{a}^{2}}-144=0$
${{a}^{4}}-3{{a}^{2}}-18=0$
$({{a}^{2}}+3)({{a}^{2}}-6)=0$
$({{a}^{2}}+3)(a+\sqrt{6})(a-\sqrt{6})=0$
$a=\sqrt{6}$
Jadi, sisi alas limas $=2a=2\sqrt{6}$
Jawaban: Tidak Ada Opsi
Matematika IPA UTUL UGM 2013 Kode 261 No. 6
Garis $g$ merupakan garis singgung kurva $y=2{{x}^{2}}-x-1$ dengan gradien $m$. Jika garis $g$ membentuk sudut ${{45}^{o}}$ terhadap garis $2x-y+4=0$, dan $0 < m < 2$, maka persamaan $g$ adalah …A. $3x+9y+11=0$
B. $3x+9y-11=0$
C. $-3x+9y+11=0$
D. $-3x+9y-11=0$
E. $3x-9y-11=0$
Pembahasan:
Kurva $y=2{{x}^{2}}-x-1$ maka ${{m}_{g}}=y'=4x-1$
Misal garis k: $2x-y+4=0$, ${{m}_{k}}=2$, $\angle ({{m}_{g}},{{m}_{k}})={{45}^{o}}$, maka:
$tg{{45}^{o}}=\left| \frac{{{m}_{g}}-{{m}_{k}}}{1+{{m}_{g}}.{{m}_{k}}} \right|$
$1=\left| \frac{{{m}_{g}}-2}{1+{{m}_{g}}.2} \right|$, diketahui pada soal $0 < m_g < 2$, maka:
$1+2{{m}_{g}}=-{{m}_{g}}+2$
$3{{m}_{g}}=1$
${{m}_{g}}=\frac{1}{3}$
$4x-1=\frac{1}{3}$
$12x-3=1\Leftrightarrow {{x}_{1}}=\frac{1}{3}$
$y=2{{x}^{2}}-x-1$
${{y}_{1}}=2{{\left( \frac{1}{3} \right)}^{2}}-\frac{1}{3}-1=\frac{-10}{9}$
Garis g melalui titik $\left( \frac{1}{3},\frac{-10}{9} \right)$ dan $m=\frac{1}{3}$ adalah:
$y-{{y}_{1}}=m(x-{{x}_{1}})$
$y+\frac{10}{9}=\frac{1}{3}(x-\frac{1}{3})$
$3x-9y-11=0$ atau $-3x+9y+11=0$
Jawaban: C/E
Matematika IPA UTUL UGM 2013 Kode 261 No. 7
Nilai $x$ yang memenuhi pertidaksamaan $\sqrt{{{625}^{x-2}}}>\sqrt{{{125}^{x}}}.\sqrt[3]{{{25}^{6x}}}$ adalah …A. $x > -\frac{8}{3}$
B. $x < -\frac{8}{3}$
C. $x < -\frac{8}{7}$
D. $x > -\frac{8}{7}$
E. $x < -\frac{12}{5}$
Pembahasan:
$\sqrt{{{625}^{x-2}}} > \sqrt{{{125}^{x}}}.\sqrt[3]{{{25}^{6x}}}$
${{\left( {{5}^{4}} \right)}^{\frac{x-2}{2}}} > {{\left( {{5}^{3}} \right)}^{\frac{x}{2}}}.{{\left( {{5}^{2}} \right)}^{\frac{6x}{3}}}$
${{5}^{2x-4}} > {{5}^{\frac{3x}{2}+4x}}$
$2x-4 > \frac{3x}{2}+4x$
$4x-8 > 3x+8x$
$x < -\frac{8}{7}$
Jawaban: C
Matematika IPA UTUL UGM 2013 Kode 261 No. 8
Himpunan semua $x$ yang memenuhi $|x-2|-1\ge x$ adalah …A. $\{x|0\le x\le \frac{7}{2}\}$
B. $\{x|x\ge 0\}$
C. $\{x|x\le \frac{1}{2}\}$
D. $\{x|0\le x\le \frac{5}{2}\}$
E. $\{x|-1\le x\le \frac{1}{2}\}$
Pembahasan:
$|x-2|-1\ge x$
$|x-2|\ge x+1$
Untuk $x\ge 2$ maka:
$|x-2|-1\ge x$
$x-2\ge x+1\Leftrightarrow -2\ge 1$
$-2\ge 1$, tidak ada penyelesaian.
Untuk $x < 2$ maka:
$|x-2|-1\ge x$
$-(x-2)\ge x+1$
$-2x\ge -1$
$x\le \frac{1}{2}$
Jawaban: C
Matematika IPA UTUL UGM 2013 Kode 261 No. 9
Suku banyak P(x) dibagi ${{x}^{2}}-x-2$ mempunyai hasil bagi Q(x) dan sisa $x+2$. Jika $Q(x)$ dibagi $x+2$ mempunyai sisa 3, maka sisa P(x) dibagi ${{x}^{2}}+3x+2$ adalah ….A. $-11x-10$
B. $-10x-11$
C. $11x-10$
D. $10x+11$
E. $11x+10$
Pembahasan:
Yang dibagi = pembagi x hasil + sisa
$Q(x)=(x+2).Hasil+3$
$Q(-2)=(-2+2).Hasil+3=3$
$P(x)=({{x}^{2}}-x-2).Q(x)+x+2$
$P(x)=(x-2)(x+1).Q(x)+x+2$
Untuk x = -2, maka:
$P(-2)=(-2-2)(-2+1).Q(-2)+(-2)+2$
$P(-2)=-4.(-1).3-2+2=12$
Untuk x = -1, maka:
$P(-1)=(-1-2)(-1+1).Q(-1)+(-1)+2$
$P(-1)=1$
Pertanyaan:
$P(x)=({{x}^{2}}+3x+2).Hasil+ax+b$
$P(x)=(x+2)(x+1).Hasil+ax+b$
$P(-2)=-2a+b=12$
$P(-1)=-a+b=1$
---------------------------- (-)
$-a=11\Leftrightarrow a=-11,b=-10$
Jadi, sisa $ax+b=-11x-10$
Jawaban: A
Matematika IPA UTUL UGM 2013 Kode 261 No. 10
Jumlah $n$ suku pertama suatu deret aritmetika dinotasikan dengan ${{S}_{n}}$. Jika suku pertama deret tersebut tak nol dan ${{S}_{4}}$, ${{S}_{8}}$ dan ${{S}_{16}}$ membentuk barisan geometri maka $\frac{{{S}_{8}}}{{{S}_{4}}}$ = …A. 2
B. 4
C. 6
D. 8
E. 10
Pembahasan:
Barisan aritmetika: ${{S}_{4}}=2(2a+3b)$, ${{S}_{8}}=4(2a+7b)$, $8(2a+15b)$
Barisan geometri: ${{S}_{4}}$, ${{S}_{8}}$ dan ${{S}_{16}}$
${{({{S}_{8}})}^{2}}={{S}_{4}}.{{S}_{6}}$
${{[4(2a+7b)]}^{2}}=[2(2a+3b)][8(2a+15b)]$
$16(4{{a}^{2}}+28ab+49{{b}^{2}})=16(4{{a}^{2}}+36ab+45{{b}^{2}})$
$4{{a}^{2}}+28ab+49{{b}^{2}}=4{{a}^{2}}+36ab+45{{b}^{2}}$
$4{{b}^{2}}-8ab=0$
$4b(b-2a)=0$ maka $b=0$ atau $b=2a$
$b=0$ maka $\frac{{{S}_{8}}}{{{S}_{4}}}=\frac{4(2a+7.0)}{2(2a+3.0)}=\frac{8a}{4a}=2$
$b=2a$ maka $\frac{{{S}_{8}}}{{{S}_{4}}}=\frac{4(2a+7.2a)}{2(2a+3.2a)}=\frac{64a}{16a}=4$
Jawaban: A dan B
Matematika IPA UTUL UGM 2013 Kode 261 No. 11
$\underset{x\to 0}{\mathop{\lim }}\,\frac{1-{{\cos }^{3}}x}{x\tan x}$ = …A. 0 B. $\frac{1}{2}$ C. $\frac{3}{4}$ D. $\frac{3}{2}$ E. 3
Pembahasan:
$\underset{x\to 0}{\mathop{\lim }}\,\frac{1-{{\cos }^{3}}x}{x\tan x}$
$=\underset{x\to 0}{\mathop{\lim }}\,\frac{(1-\cos x)(1+\cos x+{{\cos }^{2}}x)}{x\tan x}$
$=\underset{x\to 0}{\mathop{\lim }}\,\frac{2{{\sin }^{2}}\frac{1}{2}x.(1+\cos x+{{\cos }^{2}}x)}{x\tan x}$
$=\underset{x\to 0}{\mathop{\lim }}\,\frac{2\sin \frac{1}{2}x.\sin \frac{1}{2}x}{x\tan x}(1+\cos x+{{\cos }^{2}}x)$
$=2.\frac{1}{2}.\frac{1}{2}.(1+1+1)$
$=\frac{3}{2}$
Jawaban: D
Matematika IPA UTUL UGM 2013 Kode 261 No. 12
Jika kurva $f(x)=a{{x}^{3}}-b{{x}^{2}}+1$ mempunyai titik ekstrim $(1,-5)$ maka kurva tersebut naik pada …A. {$x|x\le 0$ atau $x\ge 2$}
B. {$x|x\le 0$ atau $x\ge 1$}
C. {$x|x\le -2$ atau $x\ge 0$}
D. {$x|x\le -\frac{1}{2}$ atau $x\ge 0$}
E. {$x|x\le -2$ atau $x\ge 1$}
Pembahasan:
$f(x)=a{{x}^{3}}-b{{x}^{2}}+1$
$f(1)=a-b+1=-5$
$a-b=-6$
$a=b-6$
Titik ekstrim di $(1,-5)$, maka $f'(1)=0$
$f'(x)=3a{{x}^{2}}-2bx$
$f'(1)=3a-2b=0$
$3a-2b=0$
$3(b-6)-2b=0$
$b=18$
$a=b-6\Leftrightarrow a=18-6=12$
Kurva naik untuk $f'(1)\ge 0$
$3a{{x}^{2}}-2bx\ge 0$
$3.12{{x}^{2}}-2.18x\ge 0$
$36{{x}^{2}}-36x\ge 0$
$36x(x-1)\ge 0$
$x=0$ atau $x=1$
HP = {$x|x\le 0$ atau $x\ge 1$}
Jawaban: B
Matematika IPA UTUL UGM 2013 Kode 261 No. 13
Dari 15 anak terdiri atas laki-laki dan perempuan akan diambil 2 anak secara bersamaan. Jika banyak kemungkinan terambil laki-laki dan perempuan adalah 26, maka selisih jumlah laki-laki dan perempuan adalah …A. 13
B. 11
C. 9
D. 5
E. 3
Pembahasan:
Misal:
p = jumlah anak laki-laki
w = jumlah anak perempuan
p + w = 15, w = 15 – p
$C_{1}^{p}.C_{1}^{w}=26$
$p.w=26$
$p(15-p)=26$
$15p-{{p}^{2}}=26$
${{p}^{2}}-15p+26=0$
$(p-13)(p-2)=0$
$p=13$ atau $p=2$
$w=15-p$
$p=13\Rightarrow w=2\Rightarrow p-w=11$
$p=2\Rightarrow w=13\Rightarrow w-p=11$
Jawaban: B
Matematika IPA UTUL UGM 2013 Kode 261 No. 14
Diketahui polinomial $f(x)$ habis dibagi $x-1$. Jika $f'(x)$ dibagi $x-1$ bersisa ${{a}^{2}}$ dan $\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)}{x-1}=2a-1$ maka $a$ = …A. -2
B. -1
C. 0
D. 1
E. 2
Pembahasan:
$f(x)$ habis dibagi $x-1$ maka $f(1)=0$
$f'(x)$ dibagi $x-1$ bersisa $f'(1)={{a}^{2}}$
$\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)}{x-1}=2a-1$
$\underset{x\to 1}{\mathop{\lim }}\,\frac{f'(x)}{1}=2a-1$
$f'(1)=2a-1$
${{a}^{2}}=2a-1$
${{a}^{2}}-2a+1=0$
$(a-1)(a-1)=0$
$a=1$
Jawaban: D
Matematika IPA UTUL UGM 2013 Kode 261 No. 15
Jika sudut lancip $x$ memenuhi 1 = ${}^{2}\log 16$ + ${}^{2}\log (\sin x)$ + ${}^{2}\log (\cos x)$ + ${}^{2}\log (\cos 2x)$ maka $x$ = …A. $\frac{\pi }{2}$
B. $\frac{\pi }{4}$
C. $\frac{\pi }{6}$
D. $\frac{\pi }{24}$
E. $\frac{\pi }{36}$
Pembahasan:
1 = ${}^{2}\log 16$ + ${}^{2}\log (\sin x)$ + ${}^{2}\log (\cos x)$ + ${}^{2}\log (\cos 2x)$
$1={}^{2}\log 16.\sin x.\cos x.\cos 2x$
$2=16.\sin x.\cos x.\cos 2x$
$2=8.2\sin x.\cos x.\cos 2x$
$2=8\sin 2x.\cos 2x$
$2=4.2\sin 2x.\cos 2x$
$2=4\sin 4x$
$\sin 4x=\frac{1}{2}$
$\sin 4x=\sin \frac{\pi }{6}\Leftrightarrow 4x=\frac{\pi }{6}\Leftrightarrow x=\frac{\pi }{24}$
Jawaban: D
Semoga postingan: Pembahasan Soal UTUL UGM 2013 Matematika IPA Kode 261 ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih.






Post a Comment for "Pembahasan Soal UTUL UGM 2013 Matematika IPA Kode 261"
Pertanyaan melalui kolom komentar akan direspon secepatnya. Jika tidak direspon, berarti pertanyaan serupa telah ada.