Skip to content Skip to sidebar Skip to footer

Prinsip Teleskoping

PRINSIP TELESKOPING
Prinsip teleskopik banyak digunakan untuk menyederhanakan suatu deret. Ada dua bentuk umum yang dikenal, yaitu penjumlahan dan perkalian sebagai berikut:
a. Prinsip Teleskopik Penjumlahan
$\sum\limits_{i=1}^{n}{({{a}_{i+1}}-{{a}_{i}})}$
$=({{a}_{2}}-{{a}_{1}})+({{a}_{3}}-{{a}_{2}})+({{a}_{4}}-{{a}_{3}})+...+({{a}_{n}}-{{a}_{n-1}})+({{a}_{n+1}}-{{a}_{n}})$
$={{a}_{n+1}}-{{a}_{1}}$
b. Prinsip Teleskopik Perkalian
$=\prod\limits_{i=1}^{n}{\frac{{{a}_{i+1}}}{{{a}_{i}}}}$ 
$=\frac{{{a}_{2}}}{{{a}_{1}}}.\frac{{{a}_{3}}}{{{a}_{2}}}.\frac{{{a}_{4}}}{{{a}_{3}}}...\frac{{{a}_{n}}}{{{a}_{n-1}}}.\frac{{{a}_{n+1}}}{{{a}_{n}}}$
$=\frac{{{a}_{n+1}}}{{{a}_{1}}}$

Contoh 1.
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+ ...+\frac{1}{2005.2006}=...$
Pembahasan:
$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$
maka soal:
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+ ...+\frac{1}{2004.2005}+\frac{1}{2005.2006}=$ diubah menjadi:
$=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+ ...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}$
Jika kita perhatikan suku kedua dan seterusnya dijumlahkan setiap dua suku maka hasilnya nol, maka diperoleh
$=1-\frac{1}{2006}$
$=\frac{2005}{2006}$

Contoh 2.
$\left( 1+\frac{1}{1} \right)\left( 1+\frac{1}{2} \right)\left( 1+\frac{1}{3} \right)\left( 1+\frac{1}{4} \right)...\left( 1+\frac{1}{n} \right) = ... $
Pembahasan:
$\left( 1+\frac{1}{1} \right)\left( 1+\frac{1}{2} \right)\left( 1+\frac{1}{3} \right)\left( 1+\frac{1}{4} \right)...\left( 1+\frac{1}{n-1} \right)\left( 1+\frac{1}{n} \right)$
$=2.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{n}{n-1}.\frac{n+1}{n}$
dengan melihat pola di atas, diperoleh saling membagi sehingga hasilnya menjadi
$=n+1$
Jadi,
$\left( 1+\frac{1}{1} \right)\left( 1+\frac{1}{2} \right)\left( 1+\frac{1}{3} \right)...\left( 1+\frac{1}{n} \right)=n+1$
Update Postingan Terbaru dengan cara subscribe atau follow channel kami dengan klik ketiga tombol di bawah ini:


Fanspage FB Catatan Matematika
Channel Telegram Catatan Matematika

Post a comment for "Prinsip Teleskoping"