Pembahasan Matematika Dasar UM-UGM 2018 No.11-20 - CATATAN MATEMATIKA

Pembahasan Matematika Dasar UM-UGM 2018 No.11-20

Postingan berikut ini adalah lanjutan dari postingan sebelumnya. Postingan ini berisi Soal dan Pembahasan Matematika Dasar UTUL-UGM 2018 No.11-20 Kode 585. Harapan saya kiranya postingan ini bermanfaat dan kiranya ada pembahasan yang kurang tepat atau kurang dimengerti bolehlah kita berdiskusi bersama melalui kolom komentar di bawah postingan ini. Baiklah, langsung saja kita mulai belajarnya ya....!

Matematika Dassar UM-UGM 2018 No. 11
Diketahui P, Q, dan R adalah sudut-sudut suatu segitiga. Jika Q lancip dan $\sqrt{2}{{\tan }^{2}}Q-\tan Q=0$, maka $\sin (P+R)$ = …
A. $-\frac{1}{3}\sqrt{3}$
B. $-\frac{1}{2}$
C. $\frac{1}{3}\sqrt{3}$
D. $\frac{1}{2}$
E. $\frac{1}{2}\sqrt{3}$
Pembahasan:
$\sqrt{2}{{\tan }^{2}}Q-\tan Q=0$
$\tan Q(\sqrt{2}\tan Q-1)=0$
$\tan Q=\frac{1}{\sqrt{2}}=\frac{de}{sa}$
$mi=\sqrt{d{{e}^{2}}+s{{a}^{2}}}$
$mi=\sqrt{{{1}^{2}}+{{\sqrt{2}}^{2}}}=\sqrt{3}$
Pada segitiga PQR berlaku:
$\angle P+\angle Q+\angle R={{180}^{o}}$
$\angle P+\angle R={{180}^{o}}-\angle Q$
$\sin (P+R)=\sin ({{180}^{o}}-Q)$
$\sin (P+R)=\sin Q=\frac{de}{mi}=\frac{1}{\sqrt{3}}$
$\sin (P+R)=\frac{1}{3}\sqrt{3}$
Kunci: C

Matematika Dasar UM-UGM 2018 No. 12
Suatu kotak berisi 4 koin (mata uang) seimbang dan 6 koin tidak seimbang. Ketika koin dilempar, peluang mendapat gambar adalah 0,5. Sedangkan untuk mata uang yang tidak seimbang peluang mendapat gambar adalah 0,8. Satu koin diambil secara acak dari kotak tersebut kemudian dilempar. Peluang mendapat gambar adalah …
A. 0,6   B. 0,64   C. 0,68   D. 0,72   E. 0,76
Pembahasan:
Peluang melempar koin seimbang adalah 4/10 = 2/5
Peluang melempar koin tidak seimbang adalah 6/10 = 3/5
Peluang melempar koin seimbang dan mendapat gambar adalah = 2/5 x 0,5 = 0,2
Peluang melempar koin tidak seimbang dan mendapat gambar adalah = 3/5 x 0,8 = 0,48
Peluang seluruhnya adalah 0,2 + 0,48 = 0,68
Kunci: C

Matematika Dasar UM-UGM 2018 No. 13
Dalam suatu grup yang terdiri dari 5 orang, jumlah umur setiap 4 orang diantaranya adalah 124, 128, 130, 136, 142. Orang termuda dari 5 orang tersebut adalah berumur …
A. 18   B. 21   C. 23   D. 25   E. 34
Pembahasan:
Misal umur keempat orang itu adalah: a, b, c, d, e dimana a < b < c < d < e
a + b + c + d = 124
a + b + c + e = 128
a + b + d + e = 130
a + c + d + e = 136
b + c + d + e = 142
----------------------- (+)
4a + 4b + 4c + 4d + 4e = 660
a + (b + c + d + e) = 165
a + 142 = 165
a = 165 – 142
a = 23, 
Kunci: C

Matematika Dasar UM-UGM 2018 No. 14
Domain fungsi $f(x)=\frac{2x+1+a}{x+a}$ adalah $\{x\in R,x\ne -a\}$. Jika domain ${{f}^{-1}}$ sama dengan $f$, maka $a$ = …
A. 3   B. 2   C. 1   D. -1   E. -2
Pembahasan:
$f(x)=\frac{2x+1+a}{x+a}$
${{f}^{-1}}(x)=\frac{-ax+1+a}{x-2}$
$D{{f}^{-1}}=\{x\in R,x\ne 2\}$
$x\ne -a=x\ne 2\Leftrightarrow a=-2$
Kunci: E

Matematika Dasar UM-UGM 2018 No. 15
Jika $\underset{x\to 3}{\mathop{\lim }}\,\left( \frac{{{x}^{n}}-{{3}^{n}}}{{{x}^{\frac{n}{3}}}-{{3}^{\frac{n}{3}}}} \right)=3\sqrt[3]{81}$, maka $n$ = ….
A. 1   B. 2   C. 3   D. 4   E. 5
Pembahasan:
$\underset{x\to 3}{\mathop{\lim }}\,\left( \frac{{{x}^{n}}-{{3}^{n}}}{{{x}^{\frac{n}{3}}}-{{3}^{\frac{n}{3}}}} \right)=3\sqrt[3]{81}$
$\underset{x\to 3}{\mathop{\lim }}\,\left( \frac{n{{x}^{n-1}}}{\frac{n}{3}{{x}^{\frac{n}{3}-1}}} \right)=3\sqrt[3]{81}$
$\frac{n{{.3}^{n-1}}}{\frac{n}{3}{{.3}^{\frac{n}{3}-1}}}=3\sqrt[3]{81}$
$\frac{{{3}^{n-1}}}{{{3}^{\frac{n}{3}-1-1}}}={{3.3}^{\frac{4}{3}}}$
${{3}^{n-1-\frac{n}{3}+1+1}}={{3}^{1+\frac{4}{3}}}$
${{3}^{\frac{2n}{3}+1}}={{3}^{1+\frac{4}{3}}}$
$\frac{2n}{3}+1=1+\frac{4}{3}$
$\frac{2n}{3}=\frac{4}{3}$
$2n=4\Leftrightarrow n=2$
Kunci: B

Matematika Dasar UM-UGM 2018 No. 16
Jika kurva $y={{x}^{2}}+ax+b$ dan $y={{x}^{3}}+(c+1)x+a$ mempunyai garis singgung yang sama di titik (1,6), maka a + b + c = ….
A. 2   B. 3   C. 4   D. 5   E. 6
Pembahasan:
${{y}_{1}}={{x}^{2}}+ax+b$ dan ${{y}_{2}}={{x}^{3}}+(c+1)x+a$ melalui titik singgung (1,6)
${{y}_{1}}={{1}^{2}}+a.1+b=6$
$a+b=5$…. (1)
${{x}^{2}}+ax+b={{x}^{3}}+(c+1)x+a$
${{1}^{2}}+a.1+b={{1}^{3}}+(c+1).1+a$
$b=c+1$ …. (2)
Mempunyai garis singgung yang sama maka:
$y_{1}^{'}=y_{2}^{'}$
$2x+a=3{{x}^{2}}+(c+1)$ di titik (1,6) maka:
$2.1+a={{3.1}^{2}}+(c+1)$
$a=c+2$ .…(3)
Jumlahkan (2) + (3) diperoleh:
$a+b=2c+3$
$5=2c+3\Leftrightarrow c=1$
$a+b+c=5+1=6$
Kunci: E

Matematika Dasar UM-UGM 2018 No. 17
Fungsi $f(x)=\frac{{{x}^{2}}+2x+5}{x+1}$ dengan $x\ne -1$ mencapai …
A. maksimum di x = 3
B. maksimum di x = 1
C. maksimum di x = -3
D. minimum di x = 0
E. minimum di x = -2
Pembahasan:
$f(x)=\frac{{{x}^{2}}+2x+5}{x+1}=\frac{u}{v}$
$f'(x)=\frac{u'.v-v'.u}{{{v}^{2}}}$
$f'(x)=\frac{(2x+2)(x+1)-1({{x}^{2}}+2x+5)}{{{(x+1)}^{2}}}$
$f'(x)=\frac{2{{x}^{2}}+4x+2-{{x}^{2}}-2x-5}{{{(x+1)}^{2}}}$
$f'(x)=\frac{{{x}^{2}}+2x-3}{{{(x+1)}^{2}}}$
$f'(x)=0$
$\frac{{{x}^{2}}+2x-3}{{{(x+1)}^{2}}}=0$
$\frac{(x+3)(x-1)}{{{(x+1)}^{2}}}=0$
Nilai x pembuat nol adalah x = -3 dan x = 1
Soal dan Pembahasan Matematika Dasar UM-UGM 2018
Diperoleh: maksimum di x = -3
Kunci: C

Matematika Dasar UM-UGM 2018 No. 18
Diketahui $P=\left( \begin{matrix}   \cos x & 2\cos x  \\   \sin x & \tan x  \\ \end{matrix} \right)$ dan $0\le x\le \pi $. Jika |P| menyatakan determinan P, maka banyaknya x yang memenuhi |P| = 0 adalah …
A. 4   B. 3   C. 2   D. 1   E. 0
Pembahasan:
$P=\left( \begin{matrix}   \cos x & 2\cos x  \\   \sin x & \tan x  \\ \end{matrix} \right)$
$|P|=0$
$\cos x.\tan x-2\sin x\cos x=0$
$\cos x.\frac{\sin x}{\cos x}-2\sin x\cos x=0$
$\sin x-2\sin x\cos x=0$
$\sin x(1-2\cos x)=0$
$\sin x=0$ atau $\cos x=\frac{1}{2}$
Untuk $\sin x=0$ maka $x={{0}^{o}},{{180}^{o}}$
Untuk $\cos x=\frac{1}{2}$ maka $x={{60}^{o}}$
Jadi nilai $x$ yang memenuhi ada 3.
Kunci: B

Matematika Dasar UM-UGM 2018 No. 19
Jika ${}^{2}\log ab=-1$ dan $\frac{{}^{2}\log a}{{}^{b}\log 2}=-6$ maka persamaan kuadrat yang memiliki akar-akar $\frac{8}{3}(a+b)-9$ dan $\frac{a+b}{3{{a}^{3}}{{b}^{3}}}$ adalah ….
A. ${{x}^{2}}+13x-22=0$
B. ${{x}^{2}}-13x+22=0$
C. ${{x}^{2}}-13x-22=0$
D. ${{x}^{2}}+11x-22=0$
E. ${{x}^{2}}-11x+22=0$
Pembahasan:
${}^{2}\log ab=-1\Leftrightarrow ab={{2}^{-1}}\Leftrightarrow b={{(2a)}^{-1}}$
$\frac{{}^{2}\log a}{{}^{b}\log 2}=-6$
${}^{2}\log a.{}^{2}\log b=-6$
${}^{2}\log a.{}^{2}\log {{(2a)}^{-1}}=-6$
${}^{2}\log a.\{-{}^{2}\log (2a)\}=-6$
${}^{2}\log a.(-{}^{2}\log 2-{}^{2}loga)=-6$
${}^{2}\log a.(-1-{}^{2}loga)=-6$
$-{{({}^{2}\log a)}^{2}}-{}^{2}\log a+6=0$
${{({}^{2}\log a)}^{2}}+{}^{2}\log a-6=0$
$({}^{2}\log a+3)({}^{2}\log a-2)=0$
${}^{2}\log a=-3\Leftrightarrow a={{2}^{-3}}=\frac{1}{8}$
${}^{2}\log a=2\Leftrightarrow a={{2}^{2}}=4$
Diperoleh: $a=4$, $b=\frac{1}{8}$
$\frac{8}{3}(a+b)-9=\frac{8}{3}(4+\frac{1}{8})-9=2$
$\frac{a+b}{3{{a}^{3}}{{b}^{3}}}=\frac{4+\frac{1}{8}}{{{3.4}^{3}}{{\left( \frac{1}{8} \right)}^{3}}}=11$
Persamaan kuadrat:
$(x-2)(x-11)=0$
${{x}^{2}}-13x+22=0$
Kunci: B

Matematika Dasar UM-UGM 2018 No. 20
Diketahui akar-akar persamaan kuadrat ${{x}^{2}}-{{b}^{2}}x+c=0$ adalah $q$ dan $3q$. Jika 1, $b$, $c-4$ membentuk tiga suku berurutan dari barisan geometri, maka $\frac{-{{b}^{2}}+c}{q}$ = …
A. -2   B. -1   C. 0   D. 1   E. 2
Pembahasan:
$x^2-b^2x+c=0$ akar-akarnya $q$ dan $3q$
$q + 3q = b^2 \Rightarrow 4q = b^2$
$q \times 3q = c \Rightarrow 3q^2 = c$
Barisan Geometri:
1, $b$, $c-4$
$U_2^2 = U_1.U_3$
$b^2 = c-4 \Rightarrow -b^2 + c = 4$
$4q=3q^2-4$
$3q^2-4q-4=0$
$(3q+2)(q-2)=0$
$q=-\frac{2}{3}$ atau $q=2$
$q=-\frac{2}{3} \Rightarrow \frac{-b^2+c}{q} = \frac{4}{-\frac{2}{3}} = -6$
$q=2 \Rightarrow \frac{-b^2+c}{q} = \frac{4}{2} = 2$
Kunci: E
Baca juga:
Soal dan Pembahasan Matematika Dasar UM-UGM 2018 No.1-10
Bagikan ke:

0 Response to "Pembahasan Matematika Dasar UM-UGM 2018 No.11-20"

Post a Comment

Terima kasih atas komentar dan kunjungannya. Pertanyaan melalui kolom komentar akan direspon secepatnya. #Berbagi Itu Indah.

Contact Form

Name

Email *

Message *